
18 The Delphi Magazine Issue 51

Beating the System:
Taming The File System, 1
by Dave Jewell

Speaking as a confirmed Delphi
zealot, there are precious few

aspects of Visual Basic that I long
to see in Delphi. A rare exception is
the file system library (sometimes
also called the FSO object model)
which was introduced in Visual
Basic 6.0. This object oriented file
system library interface allows you
to easily navigate around the vari-
ous drives, folders and files
attached to your PC and contains
many routines for doing useful
work, such as moving files and fold-
ers from one place to another.
Strictly speaking, the file system
library isn’t actually part of VB at
all. Rather, it’s implemented in the
Microsoft Scripting Runtime
(SCRRUN.DLL) which is imple-
mented as a COM server. By adding
the Scripting Runtime to your
Visual Basic project (use the Ref-
erences option in VB’s Project
menu), the file system API
becomes instantly available to
your latest VB project.

At this point you’re probably
thinking ‘Aha! Why not simply
import the Scripting Runtime COM
server into Delphi?’ Well, you can
certainly do that and it will work,
after a fashion. The code fragment
in Listing 1 shows how simple it is
to exploit the file system library
from Delphi 5. In this case, I’m
assuming that you’ve imported the
Scripting Runtime into Delphi,
installed it as a component on the
palette, and dropped a component
of type TFileSystemObject onto the
current form, renaming the
component to FS.

The code simply accesses the
Drives property of the file system
object, Drives being implemented
as an OLE collection. The OLE col-
lection has a default member
called Item (and since this code
fragment was written in Delphi 5,
the compiler understands about
default members) meaning that I

can simply refer to my drive C: by
using C as an index into the collec-
tion. This returns a new object
reference of type IDrive, and
accessing the TotalSize property
of this drive object will give me the
total size of the C: partition. Dead
simple. In a similar fashion, I could
figure out the available drive
space, determine if the drive was
ready (in the case of a volume that
supported removable media), read
the disk serial number and so
forth.

On the negative side, I still feel
that Delphi’s relationship with
COM isn’t quite as cosy as it could
be, and that’s still the case when
you look at Delphi 5. As an exam-
ple, consider the Drives collection
that I mentioned a moment ago.
Visual Basic programmers have
the luxury of being able to easily
enumerate the members of an OLE
collection because support for
doing so is built right into the
language, courtesy of the handy-
dandy FOR EACH construction: see
Listing 2.

Unfortunately, this is a luxury
unknown to Delphi programmers.
If you want to enumerate all the
members of an OLE collection in
Delphi, a certain amount of rather
counter-intuitive code is required,
and all the more so when you real-
ise that Scripting Runtime’s file

system model uses several
different collections. In addition to
this, there are the usual consider-
ations such as whether or not
Microsoft’s SCRRUN.DLL library is
distributable, whether it exists on
the target machine, how to install
and register it, and so forth.

For all these reasons and more, I
decided to write my own encapsu-
lation of the file system under
Delphi. I can’t promise you that it
has as much functionality as the
FSO library (it doesn’t) but I can
guarantee that it’s a lot easier to
use, deploy and extend in any way
you like.

Introducing The
TFileSystem Class
In the Scripting Runtime, you have
a single file system object which
contains a collection of Drive
objects, each of which corre-
sponds to a logical drive on your
computer. At the next level you
have a Folders collection which
contains a list of Folder objects,
and hanging off each Folder is yet
another collection, Files, which
describes the files contained
within each directory.

Although this arrangement is
elegant and intuitive, I wanted to
take an approach that was simpler
to implement, and I didn’t want to
have (for example) Folder objects

procedure TForm1.FormCreate(Sender: TObject);
var
Drive: IDrive;

begin
Drive := FS.Drives ['C'];
ShowMessage (IntToStr (Drive.TotalSize));

end;

Sub ShowDriveList
Dim fs, d, dc
Set fs = CreateObject("Scripting.FileSystemObject")
Set dc = fs.Drives
For Each d in dc
... lots more code here ...

Next
MsgBox s

End Sub

➤ Above: Listing 1 ➤ Below: Listing 2



20 The Delphi Magazine Issue 51

lying around in memory that might
potentially be invalidated when
another process deletes a sub-
directory. I therefore decided to
‘flatten out’ the FSO hierarchy into
a single file system object which is
highly modal, the TFileSystem class
being the result. In other words,
the contents of the various proper-
ties change depending on which
drive, directory and file you might
be looking at.

Let’s start at the top level and
work our way down. If you examine
the code in Listing 3 you’ll see that
TFileSystem has a property called
Drives. Because this is an array
property, it can’t appear in the pub-
lished section of the class defini-
tion and has to go into the public
area as a runtime only property.

As an aside, personally, if I’d
been involved with the Object
Inspector code in Delphi 5, I would
not have bothered with the
brain-dead ‘property categories’
scheme that Borland have come up
with. I think it would have been far
more useful to come up with some
mechanism for displaying array
properties in the Object Inspector
at design-time. And yes, I would
definitely have wanted to see an
Object Inspector that’s capable of
displaying read-only properties!
End of diatribe...

Drives is a simple array of char-
acters. If you supply it with an
index value, it will give you the
drive letter corresponding to that
particular drive. This is always an
upper case character. Thus, an
index of zero will correspond to
drive A: on most computers, and A
will be returned as the function
result from the ‘getter’ routine,
GetDriveChar. If you examine this
routine, you’ll see that it merely
returns a character from the

fDrives string, a private variable
within the TFileSystem object. My
initial implementation of fDrives
used a TList, but I eventually
realised that a string would be
even simpler!

Obviously, you need to supply
the Drives property with a valid
index, but how do you know how
many logical drives are available?
The answer is to use the DriveCount
property which, internally, doesn’t
do anything more complex than
get the length of the fDrives vari-
able. Thus, assuming that you’ve
created a TFileSystem object called
FileSys, you could populate a
listbox with available drive letters
as easily as this:

for Idx := 0 to
FileSys.DriveCount-1 do
ListBox1.Items.Add(
FileSys.Drives[Idx] + ‘:’);

If you run this code on my com-
puter, you will end up with a
listbox that contains C:, D:, E: and
F:, the drive letters of my four hard
disk partitions.

Hmmm... so what’s happened to
my floppy drive, my ZIP drive and
the CD-ROM drive? The answer is
that I designed TFileSystem so that,
by default, it only references fixed
disks, which will most often be the
type of disk you’re interested in.

Thus, in my case, the fDrive
string will consist of the letters
CDEF. You can easily change this
default usage through the
DriveTypes property, which speci-
fies a set of the drive types you’re
interested in. By default, this has a
value of [fsFixed], giving fixed
drives only.

I designed things this way so that
if, for instance, you’re only inter-
ested in one particular type of
drive (for example CD-ROM
drives), then you can set the

DriveTypes property accordingly
and then you know that each of the
drives accessible through TFile-
System is of the specified type. Con-
versely, you can set DriveTypes to
include all possible drive types if it
makes sense for the application in
hand.

Each time that you change the
value of the DriveTypes property,
it’s important to bear in mind that
the list of available drives will be
reinitialised according to which
drives fit the specified criteria.
Most people only have a single
CD-ROM drive on their system, and
if you therefore set DriveTypes to
[fsCDROM], you’ll typically find that
DriveCount will return a value of 1
and Drives[0] will correspond to
the drive letter of your CD drive.

Another important property
here is DriveLetter. Once you’ve
set up DriveTypes as required, you
can choose any available drive
from the Drives array and set the
DriveLetter property to ‘point’ at
the required drive. This is what I
meant when I said that TFileSystem
was essentially a modal design. At
any time, you can also read from
the DriveLetter property to see
which is the currently selected
drive. If you try and set DriveLetter
to a drive type which doesn’t agree
with the current value of
DriveTypes, then the property will
not be changed. In other words, if
you (for example) specify that you
want to work with fixed disks and
then try and set DriveLetter to the
drive letter of your floppy disk,
then you’ll be politely ignored. As
an added convenience, whenever
you change DriveTypes, the
DriveLetter property will automat-
ically be initialised to the first
found drive which fits that type
set. Thus, on my system, a value of
[fsFixed] will set up drive C: as the
currently selected drive.

unit UFileSys;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Grids, RzLstBox;

type
TForm1 = class(TForm)
DriveList: TRzTabbedListBox;
procedure FormCreate(Sender: TObject);

private
public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
type
EFileSystem = class (Exception);
TDriveType = ( fsUnknown, fsNoRoot, fsRemovable, fsFixed,
fsRemote, fsCDROM, fsRAMDisk );

TDriveTypes = set of TDriveType;
TFileSystem = class (TComponent)
private
fDriveLetter: Char;
fSerialNumber: DWord;
fDriveType: TDriveType;

{ Continued on facing page... }

➤ Listing 3



November 1999 The Delphi Magazine 21

{ Continued from facing page }

fDriveTypes: TDriveTypes;
fFileSystem, fDrives, fVolumeName: String;
fTotalSize, fAvailableSpace, fFreeSpace: TLargeInteger;
procedure InitDrivesList;
function GetDriveCount: Integer;
function GetIsReady: Boolean;
procedure SetDriveLetter (Value: Char);
function GetDriveChar (Index: Integer): Char;
function GetUsedSpace: TLargeInteger;
function GetSerialNumber: String;
procedure SetVolumeName (Value: String);
procedure SetDriveTypes (Value: TDriveTypes);

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
procedure Refresh;
property Drives [Index: Integer]: Char
read GetDriveChar;

published
// Drive-specific stuff....
property DriveLetter: Char read fDriveLetter
write SetDriveLetter;

property DriveType: TDriveType read fDriveType;
property IsReady: Boolean read GetIsReady;
property VolumeName: String read fVolumeName
write SetVolumeName;

property FileSystem: String read fFileSystem;
property SerialNumber: String read GetSerialNumber;
property SerialNum: DWord read fSerialNumber;
property TotalSize: TLargeInteger read fTotalSize;
property FreeSpace: TLargeInteger read fFreeSpace;
property UsedSpace: TLargeInteger read GetUsedSpace;
property AvailableSpace: TLargeInteger
read fAvailableSpace;

property DriveCount: Integer read GetDriveCount;
property DriveTypes: TDriveTypes read fDriveTypes
write SetDriveTypes default [fsFixed];

end;
{ TFileSystem }
constructor TFileSystem.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
SetDriveTypes ([fsFixed]);

end;
destructor TFileSystem.Destroy;
begin
Inherited Destroy;

end;
function TFileSystem.GetDriveCount: Integer;
begin
Result := Length (fDrives);

end;
function TFileSystem.GetDriveChar (Index: Integer): Char;
begin
Result := #0;
if (Index >= 0) and (Index < Length (fDrives)) then
Result := fDrives [Index + 1];

end;
procedure TFileSystem.InitDrivesList;
var
p: PChar;
Buff: array [0..255] of Char;

begin
fDrives := '';
GetLogicalDriveStrings(sizeof(Buff), Buff);
p := Buff;
while p^ <> #0 do begin
if TDriveType(GetDriveType(p)) in fDriveTypes then begin
fDrives := fDrives + UpperCase (p^);
// If this is first, make it current drive by default
if Length (fDrives) = 1 then
SetDriveLetter (p^);

end;
Inc (p, 4);

end;
end;
function TFileSystem.GetUsedSpace: TLargeInteger;
begin
Result := fTotalSize - fFreeSpace;

end;
function TFileSystem.GetSerialNumber: String;
begin
// Precision specifier in the format string ensures that
// leading zeroes actrually get printed instead of being
// silently discarded....
Result := Format ('%.4x-%.4x', [HiWord (fSerialNumber),
LoWord (fSerialNumber)]);

end;
procedure TFileSystem.SetDriveLetter (Value: Char);
begin
Value := UpCase (Value);
if (Value <> fDriveLetter) and (Pos (Value, fDrives) > 0)
then begin
fDriveLetter := Value;
fDriveType :=
TDriveType(GetDriveType(PChar(Value+':\')));

Refresh;
end;

end;
function TFileSystem.GetIsReady: Boolean;
var
errMode, FindErr: Integer;
SearchRec: TSearchRec;

begin
Result := fDriveType in [fsFixed, fsRemote, fsRAMDisk];
if not Result then begin
errMode := SetErrorMode (sem_FailCriticalErrors);
try
FindErr :=
FindFirst(fDriveLetter+':\', faAnyFile, SearchRec);

try
Result := FindErr = 2;

finally
FindClose (SearchRec);

end;
finally
SetErrorMode (errMode);

end;
end;

end;
procedure TFileSystem.SetDriveTypes (Value: TDriveTypes);
begin
if Value <> fDriveTypes then begin
fDriveTypes := Value;
InitDrivesList;

end;
end;
procedure TFileSystem.Refresh;
var
Junk: DWord;
szVolumeName, szFileSystem: array [0..255] of char;

begin
// Initialise drive-information properties
if not GetIsReady then
raise EFileSystem.Create('Drive not ready');

GetDiskFreeSpaceEx (PChar (fDriveLetter + ':\'),
fAvailableSpace, fTotalSize, @fFreeSpace);

GetVolumeInformation (PChar (fDriveLetter + ':\'),
szVolumeName, sizeof (szVolumeName), @fSerialNumber,
Junk, Junk, szFileSystem, sizeof (szFileSystem));

fVolumeName := szVolumeName;
fFileSystem := szFileSystem;

end;
procedure TFileSystem.SetVolumeName (Value: String);
begin
if GetIsReady and (fVolumeName <> Value) then begin
if Length (Value) > 11 then
Value := Copy (Value, 1, 11);

SetVolumeLabel(PChar(fDriveLetter+':\'), PChar(Value));
Refresh; // Ensure fVolumeName reflects reality...

end;
end;
//--End of TFileSystem component--------------
procedure TForm1.FormCreate (Sender: TObject);
var
S: String;
Idx: Integer;
TotBytes: Double;
FileSys: TFileSystem;
function StrDriveType (Typ: TDriveType): String;
begin
case Typ of
fsRemovable: Result := 'Removable';
fsFixed:     Result := 'Fixed    ';
fsRemote:    Result := 'Remote   ';
fsCDROM:     Result := 'CD-ROM   ';
fsRAMDisk:   Result := 'RAM-Disk ';
else         Result := '-unknown-';

end;
end;

begin
FileSys := TFileSystem.Create (Self);
with FileSys do try
DriveTypes :=
[ fsRemovable, fsFixed, fsRemote, fsCDROM ];

for Idx := 0 to DriveCount - 1 do begin
try
DriveLetter := Drives [Idx];
S := DriveLetter + ':' + #9 + VolumeName + #9 +
FileSystem + #9 + SerialNumber + #9;

TotBytes := TotalSize;
S := S + Format ('%n', [TotBytes]);
SetLength (S, Length (S) - 3);
S := S + #9 + StrDriveType (DriveType);

except
on EFileSystem do S := Drives [Idx] + ':' + #9 +
'---<not ready>---';

end;
DriveList.Items.Add (S);

end;
finally
FileSys.Free;

end;
end;
end.



22 The Delphi Magazine Issue 51

Retrieving And
Setting Drive Information
OK, so we can tell TFileSystemwhat
drive type(s) we’re interested in,
we can enumerate the available
drives, and we can specify which
drive we want to work with. What
else is available? For starters, the
DriveType property returns the
type of the currently selected
drive. For obvious reasons, this
isn’t likely to be very informative
unless you’ve set DriveTypes so as
to reference more than one
possible drive type.

More useful is the IsReady prop-
erty. This returns a Boolean value
according to whether or not the
currently selected drive is ready
(by the way, in case you haven’t
noticed, I’ve modelled these vari-
ous property names on the corre-
sponding properties in the FSO
library). For fixed, networked and
RAM drives, this will always return
true. However, for drives which
take removable media (including
CD-ROM drives), the TFileSystem
class interrogates the drive to
determine whether or not the drive
has media loaded.

TFileSystem also has four prop-
erties which relate to the size of the
currently selected drive and each
of these properties returns a
TLargeInteger, which, as you may
know, is a 64-bit integer value. Why
64-bit integers? Well, sat just
behind me is a machine with a
20Gb hard disk! As you’ll no doubt
appreciate, a 32-bit integer is only
capable of ‘counting up’ to around
2Gb, which means that if you
create a partition greater than this,
you won’t be able to retrieve the
size of the partition using ordinary
integers, a scenario that’s highly
likely with today’s enormous (but
cheap) hard disks.

At this point, I should confess
that this code won’t work with
Delphi 3, the main reason being
that Delphi 3 doesn’t correctly
handle TLargeInteger. To be more
precise, the real problem is that
some of the API declarations in the
Delphi 3 version of the Windows unit
are just plain wrong. If you care-
fully examine the Delphi 3 declara-
tion of GetDiskFreeSpaceEx (for
example) and compare it with the

equivalent declaration in Delphi 4
or 5, you’ll see that the former
refers to 32-bit Integer arguments,
while the more recent declarations
correctly declare the arguments as
being 64-bit TLargeInteger values.
Whilst in practice this isn’t much of
a problem, it isn’t the only issue
relating to the GetDiskFreeSpaceEx
routine.

GetDiskFreeSpaceEx is needed in
order to correctly report the size of
partitions over 2Gb in size, but this
API routine didn’t exist in very
early versions of Windows 95. In
Delphi 3, you’re on your own, and
it’s up to you to use GetProcAddress
to figure out whether or not this
routine is implemented inside the
KERNEL32 library. Fortunately,
those clever souls at Borland have
cunningly hijacked the GetDisk-
FreeSpaceEx routine in Delphi 4 and
5, using some behind-the-scenes
code to automatically determine
whether or not the API routine
exists, and implementing some
equivalent code inside SYSUTILS if it
doesn’t. The bottom line is that
Delphi 3 is really looking a bit long
in the tooth for this particular task,
and I’m going to be lazy and let
Delphi 4 and 5 take the strain. If you
want to convert the code so as to
work with Delphi 3, then look at the
Delphi 4 version of SYSUTILS, and in
particular, you’ll need to take the
BackfillGetDiskFreeSpaceEx rou-
tine and transplant it into your
Delphi 3 application, with suitable
code to ensure that it gets called if
the ‘real’ GetDiskFreeSpaceEx rou-
tine isn’t present in the Windows
kernel. [Or, you could check Brian
Long’s solution in the Delphi Clinic
in Issue 27, which modifies DiskFree
to use floating point numbers. Ed.]

The most important of these four
properties is TotalSize, which
returns the total byte size of the
partition. If you look at Figure 1,
you’ll see the normal Windows
Disk Propertiesdialog. In this case,
it’s being used to examine my F:
drive, and is reporting a total size
of 3,070,205,952 bytes. Superim-
posed over the bottom of this

dialog is the message-box output
of a small Delphi test program,
written using TFileSystem, which is
also showing the total size of drive
F: Notice that there is complete
agreement between the two pro-
grams. The message box was
constructed as shown in Listing 4.

Yes, it’s nice to see that Format
doesn’t break when you supply a
64-bit argument as the counterpart
to a %d format string! Aren’t they a
clever bunch in Scotts Valley?

The other three 64-bit proper-
ties are FreeSpace (whose meaning
should be blisteringly obvious),
UsedSpace and AvailableSpace. The
value returned from UsedSpace is
calculated by subtracting the
amount of free space from the total
size of the drive since, as far as I
know, there is no API call to
retrieve the used space directly.
You might be wondering why
there’s an AvailableSpace and a
FreeSpace property, don’t they
both amount to the same thing?

Usually, yes, but sometimes, no.
This distinction is made for the
sake of those multi-user network
set-ups which allocate disk quotas
on a per-user basis. This means
that, for example, there might be
20Gb of disk space available on a
large server drive, but your quota
means that you’ve only got access
to, say, 5Gb. If you’re running a
standalone machine, then Avail-
ableSpace and FreeSpace will both
return the same value, but if you’re
working with quotas then Avail-
ableSpace will indicate how much
free disk space is available to you,
whereas FreeSpace will return the
total amount of free space on the
drive. For obvious reasons, you
should always go with the
AvailableSpace figure because it
will always reflect what can be
allocated by you.

The code fragment in Listing 4
also introduces another property,
VolumeName. This corresponds to
the volume label of the currently
selected disk and, on a FAT file

FileSys.DriveLetter := 'F';
ShowMessage (Format ('Total size of %s on drive %s: is %d bytes',
[FileSys.VolumeName, FileSys.DriveLetter, FileSys.TotalSize]));

➤ Listing 4



24 The Delphi Magazine Issue 51

system, can never exceed 11 char-
acters in length because Microsoft
used the classical 8-character file-
name with 3-character extension in
which to store the label. This is
also a writeable property: just
assign to the VolumeName property
and the volume label of the
selected disk will be updated
accordingly. Do bear in mind,
though, that MS-DOS automatically
uppercases volume labels, so what
you read might not be exactly what
you write!

There are three other
TFileSystem properties that we
haven’t mentioned so far. All three
are read-only properties. The first,
FileSystem, returns an ASCII
description of the file system cor-
responding to the current drive.
SerialNumber provides an ASCII
representation of the serial
number belonging to the current
drive. For compatibility with
MS-DOS, I’ve formatted this string
into two four-digit groups sepa-
rated by a hyphen, eg 15F6-0B50.
However, if you want to access the
serial number as a single, ‘raw’,
32-bit quantity (for example, when
performing serial number checks
in a copy protection scheme), then
you can just use the SerialNum
property instead. Long-standing
readers of this column may recall
the agonies I went through in Issue
7 when trying to access a drive’s
serial number from 16-bit Delphi;
it’s nice being able to access it as a
simple property of our TFileSystem
object. Maybe 32-bit Windows
does have its uses after all...

Having described TFileSystem
from a usage point of view, there’s
relatively little left to say about the

code itself. The only rou-
tine worthy of note here
is GetIsReady, which has
the job of checking to see
if the currently selected drive is
ready in the sense of removable
media being present. If the drive
type is fixed, remote or RAM disk,
then we assume that everything is
OK and simply return True. For
removable media (including
CD-ROM drives), the code has to
find some way of physically check-
ing for the presence of the disk.
One possibility would be to look
for a file with a very unlikely name,
and another possibility would be
to try creating (and then immedi-
ately deleting) a file with some ran-
domly generated name. The
second option would have the
advantage of determining whether
or not the media was write-
protected. However, I decided to
play safe by using a relatively
innocuous FindFirst routine to
check for media present.

An interesting wrinkle here is
that my code always checks for the

presence of a file called X:\where X
is the drive letter in question.
According to the documentation,
FindFirst should enable one to
check for the existence of a partic-
ular directory and, in theory, the
root directory should be no excep-
tion! However, even if a valid, for-
matted disk is present, FindFirst
will return an error code of 2 (file
not found) if you specify the root
directory! I thought that perhaps
this was a strange quirk of Win-
dows 98, but I tried the same code
under a beta of Windows 2000 with
exactly the same result. So the
bottom line is that an error code of
2 (file not found) indicates that the
root directory actually was found!
Any other error code is inter-
preted as drive not ready.
Microsoft, don’t you just love
‘em...

Next Month
The code in Listing 3 includes the
TFileSystem component and a
simple testbed application, which
can be seen running in Figure 2. I
find that it is often simpler to
develop a component in this
manner and then separate it from
the test application once it’s rea-
sonably complete.

Complete project files (for
Delphi 4) are included on this
month’s disk along with a ready-
to-run EXE file. You should bear in
mind that I used one of the Raize
components, TRzTabbedListBox, to

➤ Figure 1: With
judicious use of the
TLargeInteger type,
our TFileSystem
component will
return exactly the
same disk drive
metrics as does
Windows Explorer
itself. However, bear
in mind that a little
extra work is
required if you want
to get this working
with Delphi 3.

➤ Figure 2: Here's the small testbed program in action. It simply
iterates through all the available drives, retrieving various
properties for each one. Notice that in this case drive G: (my ZIP
drive) is reported as not ready because no media was present
when the program executed.



November 1999 The Delphi Magazine 25

implement the ‘columnised’
listbox. Therefore, unless you’ve
got the Raize components, you
won’t be able to rebuild the appli-
cation. But in any event the aim of
the testbed is to demonstrate use
of the TFileSystem component.

You’ll notice that almost all the
implemented properties simply
access a ‘cached’ private variable
when reading. This means that you
might have a potential problem if
another process comes along and
(for example) eats a couple of
gigabytes of disk space after
TFileSystem has already decided
how much disk space is available.
In order to address this issue, I’ve
added a public routine, Refresh,
which should be called just before
retrieving any critically important
information such as the amount of
available disk space. In a similar
vein, you’ll notice that the Set-
VolumeName routine calls Refresh
immediately after changing the
volume label of a drive, so as to
ensure that the cached volume
label is consistent with whatever
MS-DOS decided to set it to.

One way around this would be
hit the disk every time you want to
retrieve disk information, and an
even better technique would be to
implement a file notification
whereby Windows itself lets us
know when something has
changed. This is something that
we’ll look at next month.

More importantly, next month’s
instalment will add substantially
more flesh onto the TFileSystem
skeleton, making it possible to
examine the folders and files on a
specific disk, retrieve information
relating to particular folders and
files, and browse around within the
overall directory structure. So, as
Dr.Bob says, stay tuned...

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
TechEditor@itecuk.com


	Introducing The TFileSystem Class
	Retrieving And Setting Drive Information
	Next Month

